On Some Quantum and Analytical Properties of Fractional Fourier Transforms
نویسنده
چکیده
Fractional Fourier transforms (FrFT) are a natural one-parameter family of unitary transforms that have the ordinary Fourier transform embedded as a special case. In this paper, following the efforts of several authors, we explore the theory and applications of FrFT, from the standpoints of both quantum mechanics and analysis. These include the phase plane interpretation of FrFT, FrFT’s role in the order reduction of certain classes of differential equations, the integral representation of FrFT, and its Paley-Wiener theorem and Heisenberg uncertainty principle. Our two major tools are quantum operator algebra and asymptotic analysis such as the singular perturbation theory and the stationary phase technique. a
منابع مشابه
Simulation of an Airy Beam with Optical Vortex under Fractional Fourier Transforms
First, this study obtained the fields of an Airy beam (AiB) with optical vortex (OV) for a Fourier transform (FT) system and a fractional Fourier transform (fractional FT) system; thereafter, their intensity and phase patterns were simulated numerically. The splitting on each line of the phase pattern indicates the position of an OV. The results show that the OV position will change when the po...
متن کاملImplementation of quantum and classical discrete fractional Fourier transforms
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importanc...
متن کاملGeneralized Time-fractional Telegraph Equation Analytical Solution by Sumudu and Fourier Transforms
We derive and discuss the analytical solution for the generalized time-fractional telegraph equation with the help of the Sumudu and Fourier transforms. In the process we use Green functions to derive the solution of the said differential equation.
متن کاملFractional cosine and sine transforms in relation to the fractional Fourier and Hartley transforms
The fractional cosine and sine transforms – closely related to the fractional Fourier transform, which is now actively used in optics and signal processing, and to the fractional Hartley transform – are introduced and their main properties and possible applications as elementary fractional transforms of causal signals are discussed.
متن کاملMeasurement of Plain Weave Fabrics Density Using Fourier Transforms
Warp and weft spacing and its coefficient of variation affect the physical properties of fabrics such as fabric hand, frictional and mechanical properties. In this paper the weft and warp spacing and its coefficient of variation for plain weave is calculated using Fourier transforms. Different methods have been used in this work including autocorrelation function. First, two dimensional power s...
متن کامل